Mathematical Model of a Cell Size Checkpoint

نویسندگان

  • Marco Vilela
  • Jeffrey J. Morgan
  • Paul A. Lindahl
چکیده

How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Cell Size Checkpoint from Spatiotemporal Positive Feedback Loop in Fission Yeast

Cells must maintain appropriate cell size during proliferation. Size control may be regulated by a size checkpoint that couples cell size to cell division. Biological experimental data suggests that the cell size is coupled to the cell cycle in two ways: the rates of protein synthesis and the cell polarity protein kinase Pom1 provide spatial information that is used to regulate mitosis inhibito...

متن کامل

Dendritic Cell Immunotherapy, the Next Step in Cancer Treatment

Cancer immunotherapy has gained a lot of interest over the past few years due to the success of immune checkpoint inhibitors in treating cancer (1, 2). Immune checkpoint inhibitors, such as monoclonal antibodies against cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), have been shown to increase survival of patients with advanced cancers (1, 2). These in...

متن کامل

A Mathematical Model for Cell Formation in CMS Using Sequence Data

Cell formation problem in Cellular Manufacturing System (CMS) design has derived the attention of researchers for more than three decades. However, use of sequence data for cell formation has been the least investigated area. Sequence data provides valuable information about the flow patterns of various jobs in a manufacturing system. This paper presents a new mathematical model to solve a cell...

متن کامل

Mathematical model of the morphogenesis checkpoint in budding yeast

The morphogenesis checkpoint in budding yeast delays progression through the cell cycle in response to stimuli that prevent bud formation. Central to the checkpoint mechanism is Swe1 kinase: normally inactive, its activation halts cell cycle progression in G2. We propose a molecular network for Swe1 control, based on published observations of budding yeast and analogous control signals in fissi...

متن کامل

A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic

In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...

متن کامل

Dendritic Cell Immunotherapy, the Next Step in Cancer Treatment

Cancer immunotherapy has gained a lot of interest over the past few years due to the success of immune checkpoint inhibitors in treating cancer (1, 2). Immune checkpoint inhibitors, such as monoclonal antibodies against cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), have been shown to increase survival of patients with advanced cancers (1, 2). These in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010